Benutzer-Werkzeuge

Webseiten-Werkzeuge


analyticalengine:bernoullinumbercalculation

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste ÜberarbeitungBeide Seiten der Revision
analyticalengine:bernoullinumbercalculation [2015-04-21 08:53] – created raineranalyticalengine:bernoullinumbercalculation [2015-05-06 18:17] rainer
Zeile 1: Zeile 1:
-====== Note G and the calculation of Bernoulli numbers ======+__false__
  
-See [[wp>Bernoulli numbers]] in Wikipedia for details on Bernoulli numbers. 
- 
-They may have been selected as an example because: 
-  * They cannot be enumerated using the //Difference Engine// 
-  * The values seem to be fairly random 
-  * The values require a machine that can handle very large numbers 
-  * In approximations of trigonometric functions, they allow less calculating steps than other approximations known at that time. Note that Tchebysheff's Approximation was published several years later (1859). 
-  * They are a sequence where the n-th number can be calculated from the previous numbers 
- 
-Note that variants for the indexing and sign for Bernoulli numbers were proposed since that time; the later forms allow shorter writing of the formulas.  
- 
-In //Note G//, equation 8 shows the recursion formula used by AAL: 
- 
-<nowiki> 
-`0 = -1/2 * (2n-1)/(2n+1) + B_1 ((2n)/2) + B_3 ((2n*(2n-1)*(2n-2))/(2*3*4)) + ... + B_(2n-1)` 
-</nowiki> 
- 
-and  in terms of the number to be calculated: 
- 
-<nowiki> 
-`-B_(2n-1) = -1/2 * (2n-1)/(2n+1) + B_1 ((2n)/2) + B_3 ((2n*(2n-1)*(2n-2))/(2*3*4)) + B_5 ((2n*(2n-1)... (2n-4))/(2*3*4*5*6)) +...` 
-</nowiki> 
- 
-Using `A_i` as abbreviation for the factors gives 
- 
-<nowiki> 
-`B_(2n-1) = A_0(n) + A_1(n) * B_1 + A_3(n) * B_3 + ... + A_5(n) * B_(2n-3)` 
-</nowiki> 
- 
-In the text, AAL wrotes: //A<sub>1</sub>, A<sub>3</sub> &c. being ... functions of n ...//, but does not use a corresponding notation in the equation, which was done in the above equation. 
- 
-Thus, the coefficients -- which are not given in //Note G//, are: 
- 
-`A_0(n) = 1/2 * (2n-1)/(2n+1)` 
- 
-`A_1(n) = -(2n) / 2` 
- 
-`A_3(n) = A_1(n) * (2n-1)/3 * (2n-2)/4` 
- 
-`A_5(n) = A_3(n) * (2n-3)/5 * (2n-4)/6` 
-         
-This makes clear, that  for `A_5` and the following the calculation steps are structurally equal and thus can be calculated within a loop. 
- 
-Note the signs in contrast to //Note G//. 
- 
-(to be continued) 
- 
-        
analyticalengine/bernoullinumbercalculation.txt · Zuletzt geändert: 2015-08-26 13:23 von rainer