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1. Introduction

In 1984, Gisbert Hasenjaeger published (in [Hasenjaeger1984]) the state table for a
machine with only two states, designed to use non-writing turing tapes as registers. The
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description is very concise, as it served only to illustrate his main subject, the use of
Jones-Matiyasevich masking.

This machine is discussed here in more detail. The reason is primarily to be able to
identify if any device of his legacy is an attempt to build such a machine. In particular,
there is an object with three counters, (see picture in the Appendix), that might have a
relation to the publication, and could have been used together with the Old Wang. While
writing, however, more notes about materialization of a Turing machine with
non-writing tapes piled up, a subject which, to my knowledge, did not receive much
attention yet.

As a side effect in thinking about materialization of such a machine, a smaller machine
(in section 3.4, Variable coding with three instructions) has been found with still only
two states, but a smaller TM index, only topped by Neary and Wood's rule-110 based
machine published in 2009.

Register machines (also called counter machines or Minsky machines) were first
published by Shepherdson and Sturgis [ShepherdsonSturgis1963] and got broader
attention by Minsky's book [Minsky1967]. According to Hasenjaeger
[Hasenjaeger1987], Rödding independently developed similar ideas, but refrained from
publication when they saw Minsky's article [Minsky1961] using non-writing Turing
tapes to hold integer values just by using the position from the single (end) mark.

Rödding later described his achievements in [Roedding1972], refering to Shepherdson
and Sturgis as only source. A working demonstrator for register machines was built by
Carsten Carstensen in 1975, see [Carstensen1975]. Register machines have be further
studied and refined by Elmar Cohors-Fresenborg, see his German book
[CohorsFresenborg1977].

Hasenjaeger (in [Hasenjaeger1987]) coined the term materialization for building
physical demonstrator machines, which will also be used in this text. Included are also
remarks on building such machines in real as demonstrator objects for educational
purposes.

Complexity issues are only hinted in the last section.

2. Register machines revisited

In 1987, Hasenjaeger wrote in [Hasenjaeger1987] that the problem of crafting physical
Turing tapes inspired Dieter Rödding and himself to try to use non-writing Turing tapes
instead of non-erasable Turing tapes, and that they proved that such a machine is as
powerful as any turing machine.

Non-writing Turing tapes have a single mark only, and are used merely as counters for
integer numbers, where the number of fields between the current field and the single
marked field is representing the integer. The machine thus could increment and
decrement a number, and sense whether the number is zero (tape is on the mark).
Personally I would prefer immutable or read-only over the clumsy not-writing attribute,
but non-writing is established enough to be kept.

Although already Minsky has proven ([Minsky1967], Theorem 14.2-1) that one register
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is sufficient, using the encoding of a set of numbers as exponents of prime numbers, this
slows down the operation by orders of magnitude. Note that the counter tapes have the
mark at the fixed end; they are not moved backwards over the mark, representing
non-negative integer numbers only. Any move beyond that limit is normally suppressed,
if not resulting in a machine stop.

Besides the registers, there is a state machine, often written as a squence of
instructions or programme, to conditionally move the tapes.

Often the number of registers is not limited a-priori, and number of counters actually
used depends on the programme. Minsky proved that two counters are sufficient, and
Cohors-Fresenborg three with structured loops. For practical demonstrations, at least
four are useful, as Carstensen used in his machine.

2.1. Minsky's instructions

Minsky in his book [Minsky1967] uses in 11.1 four primitive instructions:

zero a register
increment a register
jump if zero, else decrement
halt

A fifth instruction, the unconditional goto, is used as an abbreviation to setting register
w zero followed by a conditional jump, which jumps because w is zero. The easiest way
to achieve this is to set aside a never changed register, e.g. register zero, and only use it
for unconditional jumping.

Zeroing a register is easy to accomplish by a small loop jumping around an

unconditional backward jump, but clearly costs time1. . Halt may be dispensible or
realized, as Hasenjaeger called it, by a dynamic stop, i.e. a tight loop jumping to itself.

In section 14.1, he uses a reduced model:

a': Add unity to a register a

a − (n): If register a is zero, jump to destination n; otherwise, decrement the
register (and do not jump)

He then again argues that an unconditional goto, written as go(n), could always be

done by w − ( − 1), provided that there is a register w which is already zero, and

clearing a register, written as a 0, via a − ( + 1) go( − 1). In the following diagrams, the
need for a third register that stays to zero is not mentioned.

For Theorem 14.1-1, proving that two registers are sufficient, however, he uses yet
another instruction set, in that

The machine uses only the operations ' and − , assuming that the successor
instruction contains the "go" information for the next instruction.

As long as the unconditional go is preceeded by an increment, this works directly;

otherwise, a decrement has to inserted at the jump target2. .
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The use of the next instruction address in every instruction is remarkable, as the same
was used in some early delay memory computers, such as Turing's ACE.

2.2. Roedding's (structured) instructions

Using Minsky's instructions might lead to arbitrary complex programs, although his
examples follow a rather structured approach. Having the conditional jump on zero, his
loops are in general while loops, where the loop is skipped on entry, and repeated with
an unconditional jump at the end. Conditional jumps allow to leave a loop before
repetition, and this is used fairly often.

Dieter Rödding (in [Roedding1972]) uses two elemenatary operations, namely increment
and decrement (limited to zero) of a certain register, and combines them together with
an iteration that repeats any composite machine while a register is not zero. This is
denoted by putting the composite machine into parenthesis and indexing the closing
parenthesis with the register number. Note that due to the concept of a composite
machine, the machine inside the parenthesis is not executed if the register that indexed
the closing parenthesis is zero. This textual machine description has its equivalence in
Structured programming, using only while-loops.

To erase register i, the notation is thus written in Roedding's notation:

        ( Si )i

Adding register 2 to register 1 (cleraring register 2) reads:

        ( A1 S2 )2

To materialize such a machine (see [Carstensen1975]), an unconditional jump goes to
the closing parenthesis, which is a conditional jump back behind the opening
parenthesis if the register denoted by the index is not zero. Carstensen indexes the
opening parenthesis instead, so that it was clear that the loop is executed only if the
given register is not zero, but could have also used Roedding's notation directly with a
slightly more complex hardware.

By prefixing the indices to the symbol, and using + and - instead of A and S, the

programmes can be written without indices3, the above examples become:

        ( 1- 1)         clear r1

        ( 1+ 2- 2)      add r1 to r2, clearing r1

which is used from now on, writing r3 for register 3 in the comments and treating the
first letter and what follows as comment. Also, all registers that are not input
parameters, must be zero upon start of the examples.

Producing the sum of r1 and r2 in r3 becomes:

        ( 3+ 1- 1)      move r1 to r3

        ( 3+ 2- 2)      add r2 to r3

Note that the decrement of the loop register can (always?) be moved to the end, so we
use 3-) as an abbreviation for 3- 3) furtheron. Auxiliary registers that are zero on entry
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and left zero are denoted using register numbers 9, 8, ... and register names t9, t8,
....

While we will prefix the register numbers directly to the operations, they could be
interpreted as instructions on its own, setting the current register, and allowing 2 - -
instead of 2- 2-. Here this option is not further used, because seldom applicable, but it
is a central concept in later sections.

In the following examples, keep in mind that the loops are while loops.

To have the sum of r1 and r2 in r3, but save the values of r1 and r2 gives:

        ( 3+ 9+ 1-)     add r1 to r3 and copy to auxiliary

        ( 1+ 9-)        restore r1

        ( 3+ 9+ 2-)     add r2 to r3 and copy to auxiliary 

        ( 2+ 4-)        restore r2

To subtract r2 from r1 clearing r2 gives:

        ( 1- 2-)

Note that, if the result would be negative, it is zero instead, as the use of negative
numbers is not directly supported.

To multiply r1 by 2 reads:

        ( 9+ 8+ 1-)     move r1 to t9 and t8

        ( 8+ 9-)        add t9 to t8

        ( 1+ 8-)        move result from t8 to r1

Multiplication of r1 with r2 giving r3 repeatedly adds r2 to r3, both operands saved:

        (       

         ( 3+ 9+ 2-)    add r2 to r3 and save in t9

         ( 2+ 9-)       restore r2

        1-)             while r1 is not zero

Dividing r1 by 2 may be attempted by:

        ( 9+ 1- 1-)     subtract twice in loop

        ( 1+ 9-)        result back to r1

This is fine for even numbers, but one more for odd numbers, so we decrement before

the loop4:

        ( 9+ 1-)        to t9

        9-              in case r1 is odd

        ( 1+ 9- 9-)     decrement twice for each round

For calculating the remainder of a division, e.g. by 2, the solution given by Cohors-
Fresenborg in exercise 6.11 divides, multiplies and uses the difference, taking about
3n+4n/2+2n/2+2n=8n steps and needs 3 temporary registers:
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        ( 9+ 8+ 1-)     to x9 and x8

        8-              compensate odd input

        ( 1+ 7+ 8- 8-)  divide by 2 to r1 and x7

        ( 1+ 7-)        add gives times 2

        ( 9- 1-)        difference is remainder

        ( 1+ 9-)        result to r1

Dividing both, n and n + 1 and subtracting the difference during the second division
takes about 3n+3n+3n=9n steps and is slower, but shorter and needs only 2 temporary
registers:

        ( 9+ 8+ 1-)     to x9 and x8

        ( 1+ 9- 9-)     divide x9 by 2, one off if odd

        8-

        ( 1- 8- 8-)     divide x8 by 2, subtract from r1

Calculating quotient and remainder together uses about 3n+5n=8n steps and not slower,
but shorter:

        ( 9+ 2+ 1-)     to t9 and r2

        9-              truncate loop early if odd

        ( 1+ 2- 2- 9- 9-) 

If the remainder is not needed, a single 2- will clear it.

2.3. Extensions: loop break and conditional

With arbitray goto operations, the solution is much easier, as the loop can be terminated
early. Using the additional operator r> to leave the loop, if register r is zero, i.e. skip
beyond its end, the division becomes:

        ( 1- 1>  9+ 1-)

        ( 1+ 9-)

and the remainder of the division by 2:

        ( 9+ 1- 1> 9- 1-)       leave loop if r1 was odd

        ( 1+ 9-)

Alternatives would be if conditionals, where only the comparison to zero would be
needed. Let 1[ make the following text execute only if register 1 is not zero, until the
closing ] is found, then the division would read:

        ( 1- 1[ 9+ ] 1-)

And the remainder calculated by:

        ( 1- 1[ 9+ ] 9-   1-)

Note that even if the brackets are replaced by parenthesis, the formula is still properly
nested.
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Note that a leave is different from a condition embracing the rest of the loop, as it
terminates the loop without clearing the loop counter.

As far as I can see, branches, i.e. case decisions as are often used in function definitions,
see Collatz series , are modeled in the theory of recursive functions by calculating the
conditions as zero or one, evaluating all possible function values, and multiplying them
with the zero or one values, adding up the sum. While this works, it is, from a practical
point of view, awfully inefficient.

2.4. Encoding a Turing tape contents by an integer number

Encoding a Turing tape including its position in a single integer number is done by

Minsky [Minsky1961] representing it by the number 2x ⋅ 32k
, where k  is the tape

contents as binary number, and x the position of the current square. In order to operate
the machine, besides an auxiliary tape, rather extensive and expensive calculations are
used.

An alternate version (published where ???) uses two counter tapes, one containing the
left, the other one the right hand part seen from the read-write head of a binary turing
tape. To move the simulated tape left, we have to divide the value representing the left
part by two, multiply the other tape by two, and add one to the second tape if the new
symbol there should be a one. This obviously requires a third tape too, to receive the
halved and doubled values, but the arithmentic is much moderate.

3. Hasenjaeger's proposed machine

In [Hasenjaeger1984], a state table is given for a Turing Machine emulating a register
machine with three registers, with three (non-writing) counting tapes, R0, R1 and R2, an

auxiliary counting tape J  to count jump destinations, and a programme tape P . The
original state table is given in the Appendix, but first the scene will be stuffed a bit.

3.1. Preparations

The necessary instructions are:

advance forward (increment) a tape,
decrement it (advance back),
jump to a different instruction if the tape is — or is not — at its beginning, i.e. is
zero.

With three tapes, there are six instructions for increment and decrement, and three
times the jump instructions with a variable target, depending on one of the tapes.

To denote a jump with certain distance, the jump instruction is just repeated the
necessary number of times, as two or more jumps on the same condition in succession
are not needed.

This gives 9 instructions, which requires 4 bits to encode in binary. Let us denote the
tape with a index, then we have

ei increment (enlarge) register i
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di decrement register i  if greater zero

ji(n) jump if register i  is not zero

The number n used in the jump instruction denotes a relative distance, thus it will
always be written with a sign (zero may be used as a substitute for halt).

Clearing register 1 is done by

d1 j1( − 1)

If d1 was zero initially, the first decrement does nothing (possibly by inhibiting the move

if the tape is marked), and the jump continues instead of jumping. However, the loops
used here are of the do loop kind, which test the jump condition at the end of the loop,
and are thus vulnerable on border cases. This problem will mostly be neglected and only
shown occasionally for illustration purpose.

Adding register 1 to register 2 is obtained by

j1( + 3)e2d1 j1( − 2)

To reduce the number of instructions, Hasenjaeger very early had the idea to have a
current tape, and to rotate through the tapes cyclically, or one may say, to have a sliding
window that opens to just one tape or register.

So this gives four instuctions (instead of nine) that can be coded in two binary digits:

        c  11   Cycle, i.e. change tape window cyclically

        d  10   Decrement current tape

        e  01   Enlarge current Tape

        f  00   iF, jump conditionally if the current tape is not zero

These are encoded very close Hooper's Wang instructions as in Appendix II of
[Hooper1969].

So the coding on the programme tape is a sequence of bit pairs to be denoted here by
the four characters above.

The (conditional) jump f uses the observation that two jumps in sequence are not
needed, thus the distance can be indicated by a sustained sequence of letters f, where
the count denotes the distance.

If the skip would be backwards and the jump applied if the register is not zero, clearing
a register would be very short:

        d f     

To add the current register to the next one becomes:

        c e c c d f f f f f 

Note that the number of changes within a loop is always a multiple of the number of
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tapes, here 3.

Hasenjaeger's machine, however, does not jump backwards, but forward, and uses a
cyclic tape to achieve backward jumps by long forward jumps. This is possible as the
number of f letters gives the number of non-f letters to skip; as backwards loops are
very common, the programme tape is filled mostly with letters f.

The machine state table is now simpler, as the programme tape is advanced once for

each instruction, so the column for the action on P can be left out5.

3.2. The state table rewritten

The machine table in Appendix is rewritten here, with the letters for the programme
tape inscription instead of the binary encoding, and columns and goups rearranged.
Blank positions in the original state table seem to denote any input, while here a dot is
used; blank space for states means same as above. S denotes the state, J the jump
counter tape, R the threefold result tape, and P the programme tape, small letters for the
new values:

        S PRJ   rj s    Remark

                        Group 1: sequential instructions

        0 c.0   #. .    cycle tape

          d10   -. .    decrement register

          e.0   +. .    increment register

          f.0   .. 1    start jumping 

                        Group 2: executing a jump

        0 c.1   .- .    decrement J for c

          d.1   .- .    decrement J for d

          f.1   .. .    skip  f 

                        Group 3: do not jump as R is zero

        1 c0.   .. 0    terminated by c  

          d0.   .. 0    terminated by d

          f0.   .. .    ignore f

                        Group 4: collect jump distance 

        1 c1.   .. 0    found c  

          d1.   .. 0    found d

          f1.   .+ .    count number of 'f's

There are some state combinations missing, these are

        S PRJ

        0 d00           decrement while R is zero

        1 e0.           terminated by e

        1 e1.           found e

The first one is obvious; nothing has to be done for a decrement instruction on a zero R
tape. The others suggest that a chain of f instructions is never followed by an e
instruction. This is weird; on the contrary, a d instruction after a f instruction is useless:
either the f did not jump because the current register is zero, then d is suppressed; or f
did jump, then d is ignored; in any case, a d after an f is useless, unless being a jump
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target. (The sequence fd will be used as a halt later.) On the other hand, f e might be
useful to set the just cleared register to 1.

Encountering a f always changes to state 1 without incrementing J, which is ok for
group 4, as the terminating non-f is already skipped before we go back to state 0. In the
case of the current register zero, one instruction is skipped always, even if no jump was
intended. This may have been overlooked by Hasenjaeger; an easy solution is to skip f if
R=0 unconditionally.

This gives a modified table assumed to better cover the intentions:

        S PRJ   rj s    Remark

                        Group 1: sequential instructions

        0 c.0   #. .    cycle tape

          d00   -. .    suppress decrement as register is zero

          d10   -. .    decrement register

          e.0   +. .    increment register

          f00   .. .    skip f as register is zero

          f10   .. 1    start jumping 

                        Group 2: executing a jump

        0 c.1   .- .    decrement J for c

          d.1   .- .    decrement J for d

          e.1   .- .    decrement J for e

          f.1   .. .    skip  f 

                        Group 3: (moved to state 0)

                        Group 4: collect jump distance 

        1 c1.   .. 0    found c, skipped 

          d1.   .. 0    found d, skipped

          e1.   .. 0    found e, skipped

          f1.   .+ .    count number of 'f's

Regarding the TM index (see [Glaschick2012]), all 5 ⋅ 2 ⋅ 2 = 20 input symbols are used,
and the 6 output actions are #. -. +. .- .+ .., thus the basic TM index is

2 ⋅ ( 20 ⋅ 6

2√ ) = 2 ⋅ 60√ = 15.5. For the cyclic programme tape, three instead of one

output tape, and a missing stop, a penalty of 4 output actions is used, giving an

estimated TM index of 2 ⋅ ( (20 ⋅
6 + 4

2 )√ = 2 ⋅ 110√ = 20.0, which is lower than

Hasenjaeger's Mini-Wang with 24.0 and 26.5. Note that the benefit from non-writing
tapes materializes in the small number of output actions. Supressing the decrement in
the tape drive is possible, but does not change the TM index.

Note that splitting state 0 on J looks like state expansion using tape J, while a
straigthforward solution would use a state on its own. This, is, however not the case, as
J contains the skip number; moreover, a different state would either make advancing P
optional, or duplicate actions in state 0, see later examples.

To implement the stop, where no tape is moved any longer, including the programme
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tape, either the advance of P would be included and optional, or a fake state h is used to
stop the clock generator. In either case a version is required that changes state to
control skipping, i.e. uses group 3 again, and duplicates group 1 actions.

Using fake state h as stop:

        S PRJ   rj s    Remark

                        Group 1: sequential instructions

        0 c.0   #. .    cycle tape

          d00   -. .    suppress decrement as register is zero  

          d10   -. .    decrement register

          e.0   +. .    increment register

          f.0   .. 1    start jumping 

                        Group 2: executing a jump

        0 c.1   .- .    decrement J for c

          d.1   .- .    decrement J for d

          e.1   .- .    decrement J for e         

          f.1   .. .    skip  f 

                        Group 3: do not jump as R is zero

        1 c0.   #. 0    found c, execute and proceed with group 1 

          d0.   .. h    found d, this is a stop

          e0.   +. 0    found e, execute and proceed with group 1  

          f0.   .. .    skip any f

                        Group 4: collect jump distance 

        1 c1.   .. 0    found c  

          d1.   .. 0    found d

          e1.   .. 0    found e   

          f1.   .+ .    count number of 'f's

Now there is an extra output symbol, thus the basic TM index is

2 ⋅ ( 20 ⋅ 7

2√ ) = 2 ⋅ 70√ = 16.7. The estimated TM index is the same 20.0, as one less

penalty for the missing halt is compensated by one extra output symbol.

Using control of P:

        S PRJ   prj s   Remark

                        Group 1: sequential instructions

        0 c.0   +#. .   cycle tape

          d00   +-. .   suppress decrement as register is zero  

          d10   +-. .   decrement register

          e.0   ++. .   increment register

          f.0   +.. 1   start jumping 

                        Group 2: executing a jump

        0 c.1   +.- .   decrement J for c

          d.1   +.- .   decrement J for d

          e.1   +.- .   decrement J for e         

          f.1   +.. .   skip  f 

                        Group 3: do not jump as R is zero
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        1 c0.   +#. 0   found c, execute and proceed with group 1 

          d0.   ... .   found d, this is a stop

          e0.   ++. 0   found e, execute and proceed with group 1  

          f0.   +.. .   skip any f

                        Group 4: collect jump distance 

        1 c1.   +.. 0   found c  

          d1.   +.. 0   found d

          e1.   +.. 0   found e   

          f1.   +.+ .   count number of 'f's

The TM indices remain the same, as the number ouf output actions is unchanged.

3.3. Integrating decrement with skip

As mentionend above, with proper ordering of the instructions, a loop jump is always
preceeded by a decrement of that register. Thus, the loop could decrement, requiring
only three instructions:

        c  cycle tapes

        e  increment

        f  decrement if not zero and jump if result is not zero

However, as the division example shows, the decrement is sometimes needed outside a
loop, which could be done (for 3 tapes) by

        fffccc

If the current register is zero, the f letters are skipped, and the three c cycle back to the
same register. If the current register is one, it will be decremented to zero, and go on as
before. If the current register is greater than one, it will be decremented, and the skip
forward activated, skipping the three cycle instructions. Thus, while using much more
space for a single decrement, the number of instructions can be reduced and the state
table made smaller.

Unfortunately, the use of fd for stop is no longer possible; so the smaller state table
without stop is modified:

        S PRJ   rj s    Remark

                        Group 1: sequential instructions

        0 c.0   #. .    cycle tape

          e.0   +. .    increment register

          f00   .. .    skip f as register is zero

          f10   -. 1    decrement and start jumping 

                        Group 2: executing a jump

        0 c.1   .- .    decrement J for c

          e.1   .- .    decrement J for e

          f.1   .. .    skip  f 

                        Group 3: zero after decrement

        1 c0.   #. 0    found c, execute and restart

          e0.   +. 0    found e, execute and restart

          f0.   .. 0    skip this f
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                        Group 4: collect jump distance 

        1 c1.   .. 0    found c, skipped 

          e1.   .. 0    found e, skipped

          f1.   .+ .    count number of 'f's

All 3 ⋅ 2 ⋅ 2 = 12 input symbols are used, the output symbols are still 6, thus the basic TM

index is 2 ⋅ ( 12 ⋅ 6

2√ ) = 2 ⋅ 36√ = 12.0 instead of 15.5. Still a penalty of 4 is

appropriate, so the estimated TM index is 2 ⋅ ( 12 ⋅ (6 + 4)

2√ ) = 2 ⋅ 60√ = 15.5 instead

of 20.0. This solution has better TM indices than the optimized Mini-Wang with 14.7 and
15.9.

If a skip to itself is accepted as a dynamic stop, the estimated TM index would use a

penalty of 3 instead of 4, giving 2 ⋅ ( 12 ⋅ (6 + 3)

2√ ) = 2 ⋅ 54√ = 14.7.

3.4. Variable coding with three instructions

Applying the variable length encoding of actions used in the Mini-Wang uses a binary
programme tape and the following instructions:

        1     cycle registers

        01    increment current register

        00n1  decrement (if not already zero) and skip if not zero

The skip instruction skips the following n 1 marks on the tape, thus always positions
behind an instruction. There is no halt; a skip to self may be used as dynamic stop.

A first unpolished version of a state table might be:

        S PRJ  rj s     Comments

        1 1.0  c. .     cycle instruction

          0.0  .. 2     incr or skip 

          111  .- .     skip ones and count 

          011  .. .     skip zeros

        2 1.0  +. 1     increment

          0.0  -+ 3     this is a skip, decr and continue

        3 001  .. .     zero after decr, find end of skip instruction

          101  .- 1     end found, start over

          011  .+ .     count zeros until end of instruction

          111  .. 0     found end, start skipping

All 8 input symbols are used (maybe not in every state), the 6 output actions are c. ..

.- +. -+ .+, so the basic TM index is 3 ⋅
8 ⋅ 6

2√ = 3 ⋅ 24√ = 14.7. A cyclic programme

tape and two more tapes behind the window give a penalty of 3, thus the estimated TM
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index is 3 ⋅
8 ⋅ (6 + 3)

2√ = 3 ⋅ 36√ = 18.0.

As is easily seen, states 2 and 3 may be joined, giving:

        S PRJ  rj s     Comments

        1 1.0  c. .     cycle instruction

          0.0  .. 2     incr or skip 

          111  .- .     skip ones and count 

          011  .. .     skip zeros

        2 1.0  +. 1     increment

          0.0  -+ .     this is a skip, decr and continue

          001  .. .     zero after decr, find end of skip instruction

          101  .- 1     end found, start over

          011  .+ .     count zeros until end of instruction

          111  .. 0     found end, start skipping

So the basic TM index is 2 ⋅
8 ⋅ 6

2√ = 2 ⋅ 24√ = 9.8, and the estimated TM index is

2 ⋅
8 ⋅ (6 + 3)

2√ = 2 ⋅ 36√ = 12.0, which are rather remarkable, finally justifying

Hasenjaeger's ideas.

3.5. Changing loop order

As indicated above, jumping if a register is not zero is tempting to make loops easy, but
mastering border conditions is difficult. If, on the other hand, jump on zero would have
been provided, the unconditional jump to loop begin is required nearly for each other
jump, blowing up code size.

So Minsky's solution is preferable, but either there would be another instruction, or
always a zero register available for the unconditional jump. In particular if the cycle
instructions are efficient, a three tape machine can have conceptually a fourth tape, that
is really non-writing, i.e. even cannot move its head. As the examples show, the registers
are cycled through in each loop repetition anyhow, so its not a problem to cycle one step
more at the end of the loop to have the zero register selected, then jump back, and then
change to the first register really demanded. However, the handy contraction of
decrement and jump conditional is no longer available.

A not yet studied solution might be to make the jump instruction dependent:

if the instruction executed before was cycle, jump is when the register is zero.
otherwise, the jump is unconditional.

3.6. Open Questions

My primary question would be to understand how Jones-Matysecivc Masking is applied
to the given machine, and what changes with the variants presented here.

Apart from that, a major question arises if compared to the sentence on top of page 251:
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If the jump condition is satisfied but instead of f…fd the next sign is c the
evaluation of this situation in the sense of Boolean algebra II is to connect it
with the top of A

However, from the state table, there is no difference (except the comment) in the state
table.

The minor questions of the state table interpretation have already been covered above:

What if a condition is not covered, like a d if the register is zero, or the chain of fs
is terminated by e?
Was it intended that the first f starting the chain is not counted, and the the letter
stopping a chain is not executed?

4. Materializing a register machine with non-writing
tapes

Different materializations of the above concepts are studied with some examples, and
more variants developped.

4.1. Cyclic tape, forward jumps only

Building a machine according to the above state table(s) is not a real problem, provided
that a nice example programme is found in order to determine the length of the tapes.
Using a cyclic tape with forward jumps will make the machine rather slow for large
programmes, as copying a register of value n to another one requires n times rotating
through the programme tape. On the other hand, visualising this behaviour, the machine
has a certain appeal as the programme tape continuously rotates, giving the feeling of a
clockwork, and could be related by a guide to the clock in a modern processor.

4.1.4. Original skip numbers

The examples use skipping all non-f instructions as in the article, and halting if a d is
preceeded by a fall-through f.

To subtract the second (non-zero) from the first register would read, using f d on zero
register as a stop:

        c  c c d c d f2 d

Note that there is a cycle before entry into the loop, as the loop assumes register 2 to be
active, so the skip count is 2.

Adding the two first (non-zero) registers to the third gives:

        c c e c d f7  c  c e c c d f7 d

If the input registers may be zero, they are each incremented first, and the result
decremented twice, as Hasenjaeger's instructions do not skip the loop if the control
register is zero:

        e e  c c e c d f13  c  c e c c d f13 c d d  c f1  d
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Note the stop is achieved by c f d, i.e. by changing to register 1 again, which is zero
from the first loop.

4.1.5. Skip cycle instructions only

Observing loops, it can be seen that a loop nearly always lands on a c instruction. This is
not surprisingly, as a register has just been decremented, and the next action will in
general modify another register. If not, a redundant series of cycle instructions must be
used.

Thus, the f chains could be made shorter if the number of f instructions denote the
number of c instructions to be skipped. e, d and f instructions are just skipped without
being counted, even those following the last skipped c. As above, f d is a halt when the d
is executed because the current register is zero and the jump was not taken.

The example to subtract the second (non-zero) from the first register with a halt reads
now:

        c  c c d c d f1 d

Note that a single d is sufficient for the stop, as the loop register is zero at end.

Adding the two first (non-zero) registers to the third now has 6 programming positions
less:

        c c e c d f4  c  c e c c d f4 d

If the input registers may be zero, they are incremented first, and the result
decremented twice:

        e e  c c e c d f6  c  c e c c d f6  c d d c f1  d

Here, the savings are 45 − 31 = 14 instruction, about 30%.

However, it seems that the state table requires an additional state to skip the
instructions following the last c skipped.

4.2. Splitting forward and backward jumps

While a unidirectional programme tape has its merits, once a bidirectional stepping
mechanism is available, it could applied to the register tapes as well as to the
programme tape.

So the questions to be tackled in this section are:

how could we support backward as well as forward jumps?
can we save one instruction letter using conditional decrement and jump?

One answer to the latter question was already shown in 3.4.

4.2.1. First Variant: skip operations and provide backward jump

To support backward jumps, the number of instructions is increased:

Hasenjaeger's Register Machine with Wang Inst... file:///home/rg/SMBdir/HNF/Hasenjaeger/Wang...

16 of 31 24.06.2013 20:11



c: cycle register
+: increment register (instead of e)
-: decrement register (limited by zero)
f: skip forward if register is zero
b: skip backwards if register is not zero

We keep to the rule that a chain of jump letters denotes the jump distance, and the jump
distance counts only operation letters, not jump letters; the variant to skip only c
operations is not considered here, see below for better solutions. The tape is not
(necessarily) cyclic, and the machine stops if the end of the tape is reached. Unless

noted, three tapes are assumed. We write 3f for f f f instead of f3. Comments are
added informally after some spacing.

Clearing a register then reads

        f - b

The first f is not necessary, as the decrement is limited, but will be useful later. Note
that some border cases, in particular zero loop variables on entry, are now easy to solve
by a forward jump at the begin of the loop.

Adding the current register to the next:

        5f c + c c - 5b  

Here, the initial 5f is necessary in case the current register is zero.

Note the small asymmetry that b goes back to the previous instruction and f skips the
next instruction (instead of going to the next one); nevertheless the repeat counts are
the same.

Add r1 to r2, restoring r1, r3 zero on entry, i.e. (2+ 3+ 1-) (1+ 3-)

        6f c + c + c - 6b

        c c 5f c c + c - 5b

Divide by 2 into second register, i.e. 1- ( 2+ 1- 1-):

        - 5f c + c - - 5b       

4.2.2. Second variant: use jump letters only

In the structured approach, each jump, forward or backward, always could go to the
opposite kind of jumps. So we could skip to jump letters instead of operations:

f means: if the register is zero, skip forward until b.
b means: if the register is not zero, skip backwards until f.

Note that in both cases, the jump may either land on a complementary jump letter,
which is skipped, as the condition is the inverse one, or the following instruction.

Clearing a register is the same again:
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        f - b

Now the jump letter f is needed as a jump target.

Add the current register to the next:

        f c + c c - b

Add r1 to r2, restoring r1, r3 zero on entry, i.e. (2+ 3+ 1-) (1+ 3-)

        f c + c + c - b

        c c f c c + c - b       

Divide by 2 into second register, i.e. 1- ( 2+ 1- 1-):

        - f c + c c - - b

To multiply, four registers are needed, as the multiplicant has to be saved, i.e. ( ( 3+ 4+
2-) ( 2+ 4-) 1-):

        3f  c  f c + c + c c - b  c c  f c c + c c - b  c - 3b 

4.2.3. Third variant: Paired jump letters

As already used by Carstensen, instead of counting the jump letters, their nesting could
be counted, requiring no argument at all. Thus, we treat them as parenthesis, and use
these characters instead:

( means: if the current register is zero, skip forward to the corresponding ).
) means: if the current register is not zero, skip back to the corresponding letter (.

It is clear that corresponding means of the same nesting level. As the programme tape is
not cyclic, stop is end of tape; alternatively, the symbol pair ( ) repeats endlessly if the
current register is not zero, and + ( ) does this always.

Clearing a register becomes

        ( - )

Add with recover becomes:

        ( c + c + c - )         move 1st to 2nd and 3rd

        c c ( c c + c - )       move 3rd to 1st

Divide by 2 into second register, i.e. 1- ( 2+ 1- 1-):

        - ( c + c c - - )

Multiplication with 4 registers, equvalent to ( ( 3+ 4+ 2-) ( 2+ 4-) 1-):

        ( c ( c + c + c c - ) c c ( c c + c c - ) c - )

Using a programme tape with five symbols, namely (c+-), the state table is rather
straightforward using 3 states:
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        S PQR pqr S'

                        State 0: sequential instructions

        0 c.. +.c .     cycle

        0 +.. +.+ .     increment

        0 -.0 +.. .     no decrement, already zero

        0 -.1 +-. .     decrement

        0 (.0 +.. 1     reg is zero, skip forwards 

        0 (.1 +.. .     reg is not zero, proceed

        0 ).0 +.. .     reg is zero, proceed 

        0 ).1 -.. 2     reg is not zero, repeat back    

                        State 1: skip forward   

        1 c.. +.. .     skip cycle

        1 +.. +.. .     skip increment

        1 -.. +.. .     skip decrement

        1 (.. ++. .     push new loop

        1 )0. ... 0     corresponding loop end found 

        1 )1. +-. .     pop loop end

                        State 2: skip backwards

        2 c.. -.. .     skip cycle

        2 +.. -.. .     skip increment

        2 -.. -.. .     skip decrement

        2 (0. -.. 0     corresponding loop begin found

        2 (1. --. .     inner loop level down

        2 ).. -+. .     inner loop level up

For the TM index, all 5 ⋅ 2 ⋅ 2 = 20 input symbols are used, the 10 output symbols are +.c
+.+ +.- +.. -.. ++. ... +-. -.. -+. giving a basic TM index of

3 ⋅ 20 ⋅
10

2√ = 3 ⋅ 100√ = 30.

Trying to reduce the TM index by eliminating unused input combinations, as Q is always
zero in state 0, and R always 1 in states 1 and 2, the table could be written more
restrictive:

        S PQR pqr S'

        0 c0. +.c .     cycle

        0 +0. +.+ .     increment

        0 -0. +.- .     decrement

        0 (00 +.. 1     reg is zero, skip forwards 

        0 (01 +.. .     reg is not zero, proceed

        0 )00 +.. .     reg is zero, proceed 

        0 )01 -.. 2     reg is not zero, repeat back            

        1 c.1 +.. .     skip cycle

        1 +.1 +.. .     skip increment

        1 -.1 +.. .     skip decrement

        1 (.1 ++. .     push new loop

        1 )01 ... 0     corresponding loop end found 

        1 )11 +-. .     pop loop end
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        2 c.1 -.. .     skip cycle

        2 +.1 -.. .     skip increment

        2 -.1 -.. .     skip decrement

        2 (01 -.. 0     corresponding loop begin found

        2 (11 --. .     inner loop level down

        2 ).1 -+. .     inner loop level up

From the 20 possible input symbols, five are not used: c10, +10, -10, (10, )10, thus the

basic TM index is 3 ⋅ 15 ⋅
10

2√ = 3 ⋅ 75√ = 25.9.

4.2.4. Forth variant: Paired jump letters with auto-decrement

As any backward jump is normally preceeded by decrementing the loop index register,
the semantics of the closing bracket could be changed to:

): if the current register is not zero, decrement and skip back to the corresponding
letter (. To indicate this, curly braces, { and }, are used instead.

Clearing a register becomes

        { }

Add with recover becomes:

        { c + c + c }

        c c { c c + c }

Divide by 2 into second register, i.e. 1+ ( 2+ 1- 1-):

        + { c + c c - }

Multiplication with 4 registers needs 21 instead of 24 symbols:

        { c { c + c + c c } c c { c c + c c } c }

The state table is essentially the same, only this line changed:

        S PQR pqr S'

        0 }.1 -.- 2     reg is not zero, decrement and repeat back              

The gain in space on the progamming tape is no really significant justifying this variant.

Note that a way to replace the single decrement by a construct using the
auto-decrement closing brace has not yet been found.

4.3. Programme encoding

4.3.1. Direct encoding

Direct encoding with a fixed number of bits per symbols has practical advances; in
particular, as Carstensen showed, to line up the symbols in a tray like holder for easy
compilation of programmes.
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Direct encoding of the five letters requires three bits, leaving three signs unused, of
which one, the blank tape, could be used to stop the machine.

If, however, there are 8 symbols available anyhow, the cycle could be substituted by
select, keeping the idea of a current window:

        1-4     select register 1-4

        +       increment

        -       decrement

        (       loop begin, skip to loop end if register is zero

        )       loop end, skip back to loop begin if register is not zero

To halt the machines then, two options are:

use an extra loop end without a corresponding loop start at the end. This means
that at the end the tape goes back to the start in search of the corresponding
opening parenthesis, and should stop there, as it is not cyclic.
use the pair (), which would, if the current register is zero, do nothing, or loop
endlessly if it is not zero; it would, however, tremble at the end.

The symbols are nearly the same as already used in 2.2, with some redundant register
changes dropped; close to Carstensen's notation, except the parenthesis have no
parameter. Producing the sum of r1 and r2 in r3 (already zero), requires 14 symbols or
42 bits:

        1( 3+ 1- )      move r1 to r3

        2( 3+ 2- )      add r2 to r3

A Multiplication without saving the first factor requires 21 symbols or 63 bits:

        1( 

          2( 3+ 4+ 2- ) add r2 to r3 and save in r4

          4( 2+ 4- )    restore r2 from r4

        1- ) 

Adding a fifth register, however, would require 4 bits, but allow for 12 registers, or 10
registes and ignore the blank symbols and have an extra halt symbol.

A straightforward state table for this variant may be:

        S PQR pqr s

        1 1.. +.1 .     select tape

          2.. +.2 .

          3.. +.3 .

          4.. +.4 .

          +.. +.+ .     increment

          -.. +.- ..    decrement

          (.0 +.. 2     start skip if zero

          (.1 +.. .     zero, ignore

          ).0 +.. .     not zero, ignore

          ).1 -.. 3     start skip backwards 
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        2 1.. +.. .     skip

          2.. +.. .     

          3.. +.. .     

          4.. +.. .     

          +.. +.. .     

          -.. +.. .     

          (.. ++. .     push level

          )0. +.. 1     close found, skip done

          )1. +-. .     pop level 

        3 1.. -.. .     skip

          2.. -.. .     

          3.. -.. .     

          4.. -.. .     

          +.. -.. .     

          -.. -.. .     

          (0. -. .      open found, skip done

          (1. --. 1     pop level

          ).. -+. .     push level      

This is technically also rather easy to realize, provided that the stop is done when then
programme tape tries to step over the start.

The TM index, however, is not appealing: All 8 ⋅ 2 ⋅ 2 = 32 input symbols are used, and

there are 13 operations, thus the basic TM index is 3 ⋅
32 ⋅ 13

2√ = 3 ⋅ 416√ = 61.2.

4.3.2. Variable coding

The variable length coding that Hasenjaeger used for his Mini-Wang (see section 4.4 in
[Glaschick2012]) has the advantage that the often used cycle instruction could be
assigned the shortest code, e.g.:

        1       c       cycle registers

        01      (       loop begin

        001     )       loop end

        0001    +       increment

        00001   -       decrement

Every instruction has at least one bit on, so that backward scanning can be done with a
reasonable number of states.

When during forward processing five zeroes (blanks on the tape) in a row occur, end of
tape is assumed, and the machine halted.

Clearing the current register is encoded in 10 instead of 9 bit, same as direct encoding,
but see below to include the decrement into the loop end:

        (  -     ) 

        01 00001 001

Adding the current register to the next one (with 3 tapes) needs 17 instead of 24 bits:
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        (  c +    c c -     )

        01 1 0001 1 1 00001 001

Multiplication using 4 tapes requires 53 (instead of 63) bits:

        1( 2 (  3 +    4 +    2   -     )   4   (  2   +    4   -     )   1 -     )

        (  c (  c +    c +    c c -     )   c c (  c c +    c c -     )   c -     ) 

        01 1 01 1 0001 1 0001 1 1 00001 001 1 1 01 1 1 0001 1 1 00001 001 1 00001 001

The decrement was intentionally assigned the longest code, if it is included in the
closing parenthesis, we use curly braces instead:

        1       c       cycle registers

        01      {       loop begin, jump forward if zero

        001     }       loop end, decrement and jump backwards if not zero

        0001    +       increment

        00001   -       decrement

Clearing the current register uses now only 5 instead of 9 bits:

        {  } 

        01 001

Adding the current register to the next one needs 12 bits:

        {  c +    c c }

        01 1 0001 1 1 001

Dividing the current register by 2, leaving the result in the next one, needs 21 bits (3
tapes):

        -     {  c +    c c -     }     

        00001 01 1 0001 1 1 00001 01

Multiplication (4 tapes) requires 40 (instead of 63) bits:

        1( 2 (   3 +    4 +    2   -)  4   (  2   +    4   -)  1 -)

        {  c {   c +    c +    c c }   c c {  c c +    c c }   c }

        01 1 001 1 0001 1 0001 1 1 001 1 1 01 1 1 0001 1 1 001 1 001

The downside of this encoding is the larger number of states to decode the instructions
to the state space. When skipping forward and 000 is found, skipping can continue until
a 1 is found and skipped; there is no need to detect malformed input. When skipping
backwards, the relevant patterns are 1 0 1, which is a opening brace, and 1 0 0 1, which
is a closing brace. As the last one read is the end of the previous instruction, one
forward step is needed to synchronize rightly. While skipping forward, the
corresponding closing brace is skipped; because it would be ignored anyhow, as the
register is zero, processing can continue with the next instruction. While skipping
backwards, the scan stops at the end of the instruction before the opening brace, so it is
scanned again forwards, which does not matter, as the register is zero and ignored
anyhow; there is no need for extra states to skip it.
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A straightforward version without state expansion by Q would read:

         S PQR pqr s

         0 1.. +.c .    cycle

           0.. +.. 1    0.

         1 1.0 +.. 5    loop begin, reg is zero, start forward skip

           1.1 +.. 0    loop begin, reg is not zero, ignore

           0.. +.. 2    00.

         2 1.0 -.. 0    loop end, reg is zero, ignore

           1.1 +.- 9    loop end, reg is not zero, decr, start backward skip

           0.. +.. 3    000.

         3 1.. +.+ 0    increment

           0.. +.. 4    0000.

         4 1.0 +.. 0    decrement, suppressed because zero

           1.1 +.- 0    decrement

           0.. ... .    four zeros in chain, halt

         5 1.. +.. 5    forward skip: cycle, ignore

           0.. +.. 6    0.

         6 1.. ++. 5    01: open brace, incr nesting level

           0.. +.. 7    00.

         7 10. +.. 0    001: close brace, zero nesting, loop end 

           11. +-. 5    001: close brace, decr nesting level

           0.. +.. 8    000.

         8 1.. +.. 5    end of instruction found, just continue 

           0.. +.. .    ignore zeros until end of instruction

         9 0.. -.. .    back, look for end of previous instruction 

           1.. -.. 10   end of previous instruction found

        10 1.. -.. 9    11: start over in backwards scan

           0.. -.. 11   01

        11 10. +.. 0    101: open brace, zero nesting, loop end

           11. .-. 9    101: open brace, decr nesting level

           0.. -.. 12   001

        12 1.. -.. 9    1001: close brace: incr nesting level

           0.. -.. 9    else skip back until end of previous instruction

For the TM index, all 2 ⋅ 2 ⋅ 2 = 8 input symbols are used, the 10 output symbols are +.c

+.. -.. +.- +.+ ... ++. +-. -.. .-., thus the TM index is 12 ⋅ 8 ⋅
10

2√ = 12 ⋅ 40√ = 75.9,

but the programme tape is very compact.

5. More elaborate examples for register machines

In search for an interesting demonstrator application for a materialized machine, the
following examples were found.

5.1. Fibonacci numbers

An indefinite series of Fibonacci numbers is generated by the formula
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kn +1 = kn + kn −1

This can be done with three registers x, y and z, where:

x is kn −1 (initially zero)

y is kn (initially one)

z is kn +1 (initially zero)

performing:

move x to z
add y to z and copy it to x
move z to y

Maybe some moves could be saved by using the registes cyclically, but this is left as an
excercise to the author.

Using register numbers instead, the inner loop reads:

        ( 3+ 1-)        

        ( 3+ 1+ 2-)

        ( 2+ 3-)        

Adding a loop around gives:

        (( 3+ 1-)

         ( 3+ 1+ 2-)

         ( 2+ 3-)

        3+ 3)           repeat without decrement

Using machine in ???4.2.3, just the numbers have to be resolved by c instructions,
requiring 27 symbols or 81 bits at 3 bits per symbol:

        ( ( c c + c - )

        c ( c + c c - )

        c ( c c + c - )

        + - )

The encoding for the compact Hasenjaeger machine from 3.4 does not need the outer
loop, as the tape is cyclic, and thus needs 59 bits:

        c c +  c s

        1 1 01 1 0141

        c c +  c c s

        1 1 01 1 1 0111

        c c c +  c s

        1 1 1 01 1 0111

The variable coding from ???4.3.2 requires 46 bits and will run quicker, as is goes back
for the loops:
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        {  {  c c +    c }

        01 01 1 1 0001 1 001

        c {  c +    c c }

        1 01 1 0001 1 1 001

        c {  c c +    c }

        1 01 1 1 0001 1 001

        +    }

        0001 001

If the counters are modulo (preferrably the same modulus), the machine will cylce.
There are e.g. 15 numbers in the series modulo 10: 1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 having
a sum of 56. There are 3 loops decrementing the current number, so we have about 3*56
turns through the programme. If the latter has 48 bits, the number of clock cylces
needed is 3*46*48=8064, at 5 Hz these are 1612 seconds, nearly 30 minutes.

5.2. Collatz series

While having a lot of names, the term Collatz series will be used here for

kn +1 =
kn

2
if kn is even

kn +1 = 3 ⋅ kn + 1 if kn is odd

which for all probed inital numbers goes into the final loop

        4 → 2 → 1

We will make use of the fact that in the second case, the result is always even, and thus
we use the condensed series:

kn +1 =
kn

2
if kn is even

kn +1 =
3 ⋅ kn + 1

2
= kn +

kn + 1

2
if kn is odd

As it is fairly difficult just to check whether a number is odd, but much more easy to
determine quotient and remainder in parallel:

kn = 2 ⋅ qn + rn

if r=0: kn +1 = qn

else: kn +1 =
3 ⋅ (2 ⋅ qn + 1) + 1

2
= 3 ⋅ qn + 2

Lacking conditionals, a multiply with rn is necesessary:

kn +1 = qn + 2 ⋅ rn ⋅ (qn + 1)

The following programme requires 4 tapes:
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        ( 

         ( 2+ 3+ 1-)            start division by 2

         3-

         ( 1+ 4+ 2- 2- 3- 3-)   q in r1 and r4, r in r2

         4+                     q+1 in r4

         ( (3+ 4-) 2-)          r3 = r4 * r2 = r*(q+1)

         ( 4-)                  clear r4

         ( 4+ 2+ 3-)            prepare *2

         ( 2+ 3-)               r2 = 2*r*(q+1)

         ( 1+ 2-)               r1 = r1 + r2

        )

Note that the multiplication by r could be written shorter, as the inner code is executed
at most once, because r2 is either zero or one, so the r4 need not be saved.

5.3. Linear congruential pseudo-random numbers

Using the linear congruential method, pseudo-random numbers with a maximum
sequence can be generated.

Using cyclic tapes for the registers, the modulus operation is done automatically, and
D.E. Knuth gives the rules when the pair of multiplicand and addition gives maximum
sequence.

For example, the formula

xn +1 = (xn ⋅ 5 + 1) % 16

generates the sequence 1 6 15 12 13 2 11 8 9 14 7 4 5 10 3 0.

The core is fairly small and needs only two registers:

         ( 2+ 2+ 2+ 2+ 2+ 1-)   mult by 5

         2+                     add 1

         ( 1+ 2-)               copy back

As starting with 0 is possible and delivers 0 as the last value, the surrounding loop could
iterate as long as the result is not zero:

        (

         ( 2+ 2+ 2+ 2+ 2+ 1-)   mult by 5

         2+                     add 1

         1+                     add one more to protect next loop

         ( 1+ 2-)               copy back

        1-)                     loop until result is zero

The machine code for 3 tapes and auto-decrement on loop end will be:

        c + + + + + c c s(-8)

        c + c + c

        c c + c s(-4)

        s(-16)
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As the copy back will be wrong if the result is zero, the number is incremented by one
before, this is needed for the surrounding loop anyhow.

Using the minimal machine in section 3.4, the coding will require 69 bits:

        c +  +  +  +  +  c c s

        1 01 01 01 01 01 1 1 00141

        c +  c  +  c

        1 01 1  01 1 

        c c +  c s

        1 1 01 1 00181

        s

        0031

        c c c

        1 1 1 

Note that the embracing loop would require a decrement and skip zero, as the tape is
cyclic, but at least one skip must be used, so the redundant ccc is used. As single c
would just repeat the sequence using a different register.

The time to run before repetition is fairly large; each number is decremented to zero
twice, using 69 clock pulses. As the sum of the numbers is 120, more than
2 ⋅ 120 ⋅ 69 = 4777560 clock cylcles are needed before repeating, running for nearly 55
days with 1 Hz, and more than a week with 5 Hz. Using a single c at the end, the
running time before repeat will be 3 times larger.

6. Universal Register Machines and Complexitiy
considerations

The term Universal (Turing) Machine was coined by Alan Turing, when he observed that
the state table of a TM could be encoded on the tape, and a universal machine could do
the same thing as any TM, with the proper encoding of the tape. Comparing two Turing
Machines is only sensible if both do the same task, so considering a universal machine is
only logical.

Comparing Register Machines is more difficult, because the concept of a Universal
Register Machine is not as prominent as for Turing Machines. The apperantly only
publications with Universal Register (or Minsky) Machine in the title are [Korec1996]
and [GregusovaKorec1979], plus a German Diploma thesis of limited use here, see
[Dietz2000].

The reason here is not only that register machines are less prominent in research; the
encoding of a state table using prime numbers leads to large and bulky universal
machines, be it simulations of Turing or register machines.

Also, the convenient state-symbol-product for Turing machines needs to be extended for
register machines, at least using the number of registers used as a factor.

Moreover, while Turing Machines are in general introduced using a state table, Register
Machines are very often shown using flow diagrams or instruction chains, which are not
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convenient to compare, although it is not complicated to convert flow diagrams to
instruction chains, and the latter to state tables.

Nevertheless, providing a universal register machine that has encoded a register
machine in a register at start, apparently is orders of magnitude less efficient than the
simulated machine, and no efficient solution is visible.

On the other hand, using Hasenjaeger's proposal to use Turing Machines to simulate
register machines, the runtime seems to be in the same order of magnitude, i.e. in
polynomial time, than the original register machine.

But as above it was shown that encoding a register machine definition with a fixed
number of symbols is possible, thus the encoding could be in polynomial form,
extracting the n-th symbol by a division by the location number. Or Minsky's technique
could be used with factors instead of exponentiations.

Such a universal register machine will then have a better efficiency compared to the
prime number encoding, maybe even polynomial time might be achievable directly, not
via Hasenjaeger's simulation of a register machine on a Turing machine.

7. Appendix

7.1. Original state table

7.2. Triple counting device
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1using real tapes, there is no quick way back to the beginning
2I am using the first edition; maybe this is changed in later editions
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5like in the second variant of the compact Mini-Wang in [Glaschick2012], where this
column is still shown.
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